
A NONLIlWAR HILiX-YOSIDA-PHILLI 

1 .  by J. R. Dorroh fM Ci.” 

Let  X eenote a r e a l  o r  complex Banach space. By a none-qansive 

semi-group, we Will mean a strongly continuous semi-group 

of nonexpansive transformations from X into X. The strong infinitesimal 

generator A of such a semi-group {T(t); t >  8) is defined by 

Ax = lim x, with domain consisting of all x for  which t h i s  l i m i t  

exists, where x = (l/h)[G(h)x - x] for x i n  X and h > 0. The 

{T(t);  t 2 0)  

h-tO 

weak infinitesimal generator i s  defined similarly, using the  weak lhit 

i n  place of the  strong l imit .  

-, 

We give a necessary and sufficient condition, 

i n  the  case tha t  X i s  a Hilbert syace, tha t  a densely defined operator 

i n  X be the  skrong infinitesimal generator of a nonexpansive semi-group. 

This may be considered a nonlinear analogue t o  the  Hille-Yosida-Phillips 

Theorem, see r5, Theorem 13, p.6241 or r6, Section 12.31. our other resu l t s  

assume ei ther  t ha t  X* is uniformly convex or  t h a t  X and X++ are 

uniformly convex. 

operator i n  X t o  determine a nonexpansive semi-group i n  certain ways, as 

well as some continuity properties of derivatives of nonexpansive semi- 

groups. 

see [2], r3], [4], (71, [8], TlO], (113, and i-121. 

These results consist of sufficient conditions for  an 

For other nonlinear analogues to the theory of l inear  semi-groups, 

The main too l  of 

proof i n  this paper i s  the notion of a multivalued dissipative operator 

as used by Komura i n  [SI. For the connection between l inear  dissipative 

h i s  research was p a r t i a l l y  supported by N.A.S.A. grant number 
NGR-1+001-024 



operators and l inear  contraction semi-groups, see [g] by Lunes and 

Phillips. Section contains the s t a t eme~t s  of the main resu l t s  and a 

discussion of them. 

operators, and Section 3 contains the  proofs of the main results.  

Section 2 c o r h i n s  two l amas  about dissipative 

1. The main results.  

Definition 1. The duality map F from X in to  X-h i s  defined by 

and (x, x?) = 1ix\12} . 
, -  

FX = (e : 

F i s  single valued i f  X* i s  s t r i c t l y  convex, and tha t  F is  uniformly 

continuous on bounded se t s  if X* i s  uniformly convex, see [7, Lema 1.21. 

! I * \ \  = !1x\\  It is  known thz t  

By a mlt ivalued operator 5 we mean a transformation A from 

8 subset of X into the  collection of a l l  subsets of XI We (somewhat 

loosely) include the operators (i. e., single valued operators) among the 

ml t iva lced  operators. 

A multivahed operator A i n  X i s  said t o  be dissipative i f  

R e  ( x ~ '  - y', f )  0 

for x, y e D(A), xr E Ax, y' E Ay, and f E F(x - Y). 

Remark. If [T(t); t - > 0) is  a nonexpansive semi-group, then both 

the weak and the  strong infinitesimal generators of IT(%)) are 

dissipative. To see this,  l e t  t ' >  0, x, y E X, and f E F(x - y). Then 

R e  ((T(t)x - X I  - (T( t )Y - Y), f> = 
2 

Re (T(t)x - T(t)y, f} - 11. - y l i  5 0. 

Lemma 1. Suppose A is a multivalued dissipative operator i n  X. 

Then I - A has a single valued nonexpansive "inverse" defined on the  
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' 'ranger ' .  R ( I .  - A> of I - A: 

R ( 1  = A) = [y: y E x - Ax for  some x ci D(A)}, 

(r - A)-'Y = cx E D(A): y E x . AX). 
If R ( I  = A) = X, then Ax i s  a closed convex se t  for each x i n  D(A). 

Proof. To prove the first statement, let x, y E D(A), x' E: Ax, 

yf E. Ayj z = x - x', w = y - y', and f E F(x - y). Then 

1I-z - wl\-![x - ylI 2 Re(z - wJ, f> = 

2 ! f x  - Y l 1 2  - Re (x' - Y'J f)2 ! I x  - Y f l  

Thus, - y j f  L l i z  - wI(* 
To prove the second statement, notice tha t  the operator A* defined 

on D(A) by l e t t i n g  Asx be the closed convex hull of Ax i s  also 

dissipative, and thus cannot properly extencl A if R ( I  - A) = X. 

Definition 2. If X i s  uniformly convex and A is  a rrlultivalued 

dissipative operator i n  X such tha t  R ( 1  - A) = X, then we define 

TA, 
which is nearest the origin. An operator B i n  X i s  s a i d t o  be a - t race 

the -- t race  of 5 on D(A) by l e t t i n g  TAx be the point of Ax 

operator i f  it i s  the t race  of such ars operator 

maximal t race operator i f  B 

properly extends B. 

A; B i s  said t o  be a 

i s  a t race operator and no t race  operator - 

Theorem 1. Sumose X* i s  unifom-ly convex and A is a densely 

defined multivalued dissipative operator i n  X such tha t  R(I - A) = X. 

Then there i s  a unique nonexpansive semi-group 
I 

{T(t); t 2 01 such that: 

3.) If x e D(A), then T ( t )  x E: D(A) 

a.e. on [0, s), T(*)x is strongly differentiable 



&.e. on [O, m ) ,  and 

(d/dt) T(t)x E A T ( t )  x 

a.e. on [O, m ) ,  

i f )  If x E D(A), then (d/dt) T ( t ) x  i s  Bochner integrable on 

bounded intervals, and 

T ( t )  x = x +  JZ (a/d<) T W X  d< 

for t 20, 
Furthermore, it is  t rue  tha t  if x E D(A) and y E Ax, then 

1 1 ( d / W  T(t)x\  1 L 1 IY 1 1 
a.e. on [O, w ) .  

Theorem 2. Suppose X and x" are  uniformly convex and B i s  a 

densely defined t race aperator i n  X. 

semi-group whose strong infinitesimal genreator i s  an  

extension of B. Furthermore, i f  x E: D(B), then T(t)x E D(B)  for 

t 2 0, and B T ( * ) x  i s  strongly continuous from the  r igh t  on [O, m) .  

If R ( I  - B) = X (which makes B a t race  operator), then B is the 

strong and the weak infinitesimal generator of 

weakly continuous on [O, m) for x E D(B). 

Then there is unique nonexpansive 

[T(t); t > O} 

ET(%)] , and BT(*)x is  

Theorem 3. If X is a Hilbert space, and B is a densely defined 

operator i n  X, then B i s  the strong infinitesimal generator of a 

nonexpansive semi-group i f  and only if  B is a maximal t race  operator. 

Remarks. Theorem 1 is  primarily a generalization (somewhat t r i v i a l )  

and a sharpening (nontrivial)  of IComura's Theorem 4 i n  [SI. 

{T(t)] 

equation. 

The semi-group 

is constructed by Komura's method, but we show t ha t  the  d i f fe ren t ia l  



(d/dt) T(t)x A T(t)x 

is sa t i s f ied  i n  a much stronger sense than tha t  established by Kornura. 

Theorem 2 shows t h a t  a densely defined t race  operator B i s  a b o s t  

as good as an infinitesimal generatorjnot only i s  there  a unique non- 

expansive semi-group 

B, but 

{T( t ) 1 whose strong infinitesimal generator extends 

DrT(t)x = B T ( t )  x 

fo r  x E D(B) and t 2 0, where D denotes the  strong r ight  derivative. 

The l a s t  statement of Theorem 2 p a r t l y  c lears  up po5n-t;~ raised by 

Browder [2, p. 8701 and Kat0 (7, Remark 2 a f t e r  Theorem 33. 

r 

The Hille-Yo sida-Phillip s Theor em fo r  l inear  semi- groups charac- 

terizes semi-group generators; whereas our Theorem 3 characterizes 

densely defined generators ( i n  Hilbert space at  that) ,  and w e  do not 

know t h a t  every nonexpansive semi-group has a densely defined strong 

infinitesimal generator, Nevertheless, Theorem 3 is  the  only  theorem 

of t h i s  type t h a t  we lmow of. 

t o  t he  one dimensional r e a l  case: a nonincreasing function B from the  

r e a l s  in to  the  r ea l s  i s  the  strong infinitesimal generator of a non- 

It i s  somewhat interest ing when applied 

f o r  a l l  r e a l  x. 



2. Lemas on dissipative operators. 

Lama 2. Suppose Y i s  a Banach space and E i s  a multivalued 

dissipative opez?ator i n  Y such t h a t  R(I - E) = Y. Le t  G denote 

the  dual i ty  map from Y in to  YX. Suppose: 

i) ru,, -(E), 

i i )  xn E E un fo r  each n, 

i i i )  l i m  un = u, w-lim x = x, and n 
iv) if v E Y, then there ex is t s  {fn] CY* such that 

fn E G(v - un) for each n and lim f E G(v - u). n 
Then u E D(E) and x E E U. If yi:- is  uniformly convex, then ( iv)  

i s  superfluous. 

Proof. The proof requires onl-j obvious modifications of the proof 

of [7, Lemma 2-51. 

Lemma 3. Suppose X* i s  uniformly convex, and l e t  

Y = L2([0, 11, X), 

measurable functions f from [O, 11 i n t o  X such tha t  i f ( * )  I I 
i s  integrable, w i t h  

the  space of (equivalecce classes of)  strongly 
2 

Then Y is  reflexive, the  duali ty map G from Y in to  Y* is  single 

valued, and y" is  isometrically isomorphic t o  L2 (EO, 11, X*) w i t h  

the  action 

of L~([O, 11, x.-) on Y. 
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Now supgose A i s  a multivalued diss ipat ive operator i n  X such 

*ha* R ( I  - A) = X. Def ine  the multivalued operator E i n  Y by 

D(B) = [f E Y : f ( t )  E D(A) ae. and there  exists g E Y such 

t h a t  g(t) E M ( t )  a.e.1, 

Ef = (g E Y : g(t) E AT ( t )  a.e.1. 

Then E i s  a multivalued diss ipat ive operator in Y, and R ( 1  - E)  = Y. 

L e t  C([O, 11, X) denote the space of continuous f'unctions from [O, 11 

i n t o  X. If 

i) fun) cc(r0,  11, x) n D(E), 

2%) Bn E E un for each II, and 

i i i )  converges uniformly t o  a and (f3,) converges 

weakly in Y to f3 E Y, 

then a E D(E) and f3 E E u. 

Proof. If follotrs from El, Theorem 3.21 and the  appendix of [ 8 ]  

that Y is reflexive and that y?'- has t'ne representation claimed. 

Consider the dual i ty  map G as being from Y in to  L2([0, 11, X*). 

Let f E Y  and g E Gf. Then 



SO tha t  Ilgct) 

&e., so tha t  
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If(t>l\ a.e. Therefore ( f ( t ) ,  g(t)) = 1 If(t)l 
E F f ( t )  a.e. 

It now follows readily tha t  the mnltivalued operator E is 

dissipative. The f ac t  t ha t  R(I - E) = Y fo l lo t~s  fron: the observetion 

tha t  if g E Y, 

is also i n  Y, and i s  i n  D(E). 

then tbe f’unction f defined by f ( t )  = (I - A)” g ( t )  

To prove the l a s t  statement of t h i s  lemna, suppose tha t  

{an] CC([O, 11, X), and tha t  [a } converges uniformly t o  U on 

[o, 11 . L e t  
n 

k = sup{llan(t)II: t E [O, 11, n = 1, 2, 3, ...]. 
If v E Y, then the sequence {an - v} i s  pointwise dominated by 

k + 1 Iv( * )  11; Also, since 

[Un 0 v’) converges pointwise t o  cr. - v, G(Cn = v)] corirerges 2ointwise 

t o  G(U - v) and thus converges strongly is L2 ([0, 11, X++) t o  

G(U - v). The r e s t  follows immediately from Lema 2. 

thus, so i s  the sequence [G(un - v)) . 

3. 

Proof of Theorem 1. 

Proof of the main theorems. 

First ,  we prove tha t  there i s  a t  most one 

nonexpansive semi-group satisfying (i) and (ii). If [S(t)’) and 

(T(t)) are tvo such semi-groups, and they agree on D(A), then they 

agree everywhere. Let x E D(A), f ( t )  = ! IT(t)x - S( t )x \  I*. Then f 

is absolutely continuous, and by [7, Lema 1.31, 

f l ( t )  = 2Re ((d/dt)T(t)x = (d/dt)S(t)x, F(T(t)x -. S(t)x)) 

a.e., so tha t  f t ( t )  i s  nonpositive a.e., and thus f(t) = 0 for t 2 0, 



The foqllowing claim can be established by an argmen-k almcSB exactly 

like Komura's argument f o r  Theorem 1, of [ 8 ] .  

a Bilbert space, but the argument generalizes; t o  see how the continuity 

Ibmura's theorem is for 

of the duality map can be used as a substi tute fo r  the Hilbert q a c e  

structure, see Kato' s proof of [7, L a n a  4.31 

There is  a nonexpansive semi-group fT(t); t 2 0) having the 

following properties. L e t  x E D(A), y E AX. There a re  two sequences 

[fn), [e,] i n  C([O, I], X) each converging uniformly t o  T(*) x 

on (0, 11 such that: 

i) g,(%) E: D(A) for 0 5 t 1 and n = 1, 2, ...> 
ii) fnf (e> E A g,(t) for  O <  t < I and n = 1, 2, ..., 
iii) fn' i s  continuous on '0, 11 for n = 1, 2, ..., and 

iv) ff , ' ( t) ' i  2 \ y \ !  for 0 L ' t  51 and n = 1, 2,.. . 

3 -  

(To make the connection with Komura's argument for [8, Theorem 41, 

k t  fn ( t )  = Tt (4, n, gn (t) = (r - (I./~)A]-' fn ( t> . )  

The sequence {fn*} i s  bounded i n  Y = L2(r0, 11, X), and thus some 

subsequence [f '1 converges weakly t o  an element B of Y. L e t  
a m  

Bn E E an fo r  each n, [anj conc-erges unif3m3y to a, and [D,] 

converges 3 z z 3 y  $0 '$. . Therefore, C4 c D(E) and 0 E ? al. Elao, 

I \ B ( t ) l l  5 l l y \ l  a.e., since the set  of ell b c f i o n s  i n  'Y satisfying 

this condition is convex and drongly  closed, thus weakly closed. 

If x? E X/-, 0 - ,'t il, and g ( s ) : =  %,tl (<)x* for 02 5 5 1, 
then g c L2([0, 13, p), and 
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a.e. on r0, 1). This argument could have been given foF any bounded 

interval, and hence the conclusions hold on TO, a). 

Proof of Theorem 2. Suppose B i s  the t race of the densely defined 

multivalued dissipative operator A i n  X, with R(I - A) = X. Let 

{T(t), t - > 0) denote the nonexpansive semi-group associated with A 

by Theorem 1 and l e t  

(T(t)]. 

AD denote the strong infinitesimal generator of  

We will show tha t  A. 3 B. 

x E D(B) = D(A). Then by Theorem 1, 11 (d/dt) T(t)xl\  (1 !Bx[ 1a.e. Let 

N C TO, 1.1 Let  

(d/dt) T(t)x E AT(t)x, and \ I(d/dt) T(t)xf 1 \ IB.\! fo r  

t E M = YO, l ] \ N .  Let (t,) C M  

and l i m  tn = 0. L e t  f ( t )  = T(t)x fo r  t 20. Then ( f t ( t n ) ]  i s  a 

bounded sequence i n  X and thus has a subsequence {ft(tm )] which 

converges weakly t o  some element z of X. Then by Lemma 2, z E Ax. 

be a se t  of measure zero such tha t  T(t)x E D(A), 

be such tha t  tn+l < tn for  a l l  n 

11 



Thus, 

Thus, 

so tha t  

z = Bx = l i m  fr (t ) . 
rnn 

Thus, 

(d/dt)T(t)x = Bx- lim( t4, t EM) 

This, together with (ii) of T!hecrem 1, shows tha t  x E D(AO) and 

A0x = Bx. 

Now l e t  x E D(B) = D(A) and 0 - .  < t < 1:- Let {tn} C M  be such 

tha t  tn+l c tn for a l l  n and lim tn = t. Again, l e t  f(s) = T(g)x 

for  0 5 4 (1. Then {fl(t,)] i s  a bounded sequence i n  X and thus has 

a subsequence {ft(trn )) which converges weakly t o  an elemexit v of X. 

By Lemma 2, 

preceeding paragraph shows that .v = BT(t)x = AoT(t)x. 

n 
f ( t )  E D(A) = D(B), and v E A f ( t ) .  The argument of the 

Now that  we know tha t  T(t)x E D(B) for x E D(B) and 0 5 t < 1, 
the same argument shows that  

right on [O, I). 

BT(*)x i s  strongly continuous from the 

The interval [O, I] could be replaced with any bounded interval 

i n  t h i s  argument, so i f  x E D(B), then T(t)x E D(B) f o r  a l l  t 2  0, 

and BT(*)x i s  strongly continuous from the r ight  on f0, CQ). 



If K ( 1  - B) = X, then B has no proper diss ipat ive extension, 

and thus is the  strong and weak infinitesimal generator of 

The fact that BT(')x i s  weakly continuous on EO, w )  for  x E D(B) 

i n  t h i s  case was proved by Kat0 [7, Lemma 4.51. 

(T(t)). 

Proof of Theorem 3. Now suppose that X is  a Hilbert space. Suppose 

tha t  B i s  a densely defined maximal t race  operator. Let [T(t);  t 20, 

be the  noneqansive semi-group determined by B, and l e t  A. denote the 

strong infinitesimal generator of {T(t)). By [8, Theorem 21, A. 

has an extension t o  a multivalued dissipative q e r a t o r  

R(I - A) = X. The semi-group associated with A by Theorem 1 i s  (T(t)), 

see r8, Theorem 51. By the  argument of Theorem 2, A. extends the  t race  

TA of A. But D(TA) = D(A) 2 D(AO) 3 D(TA), and therefore A. = TA B. 

Since B is a maximal t race  operator, B = Ao. 

A such tha t  

Now suppose t h a t  {T(t); t 2 0)  is a nonexpansive semi-group with 

densely defined strong infinitesimal generator 

preceeding paragraph shows tha t  A. i s  a t race  operator. Suppose B 

is a t race operator which extends Ao, say B = TAy where A i s  a 

multivalued dissipative operator i n  X such t h a t  R(I - A) = X. L e t  

[S(t); t 2 0) be the nonexpansive semi-group associated with A by 

Theorem 1, and le t  denote the  s t r i c t  infinitesimal generator of 

The argument of the  

Bo 

[S(t)): Again, by the  argument f o r  Theorem 2, w e  have Bo 3 TA = B 3 Ao. 

The uniqueness argxment given for Theorem 1 shows t h a t  {S(t)) and 

(T(t)]  agree on D(A), which is  dense, so [S(t))  = [T(t)) ,  and 

Bo= Ao. Therefore B = A and A. is a maxinal trace operator. d 
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